TEORÍA Y EJERCICIOS

domingo, 1 de junio de 2014

MEDIDAS DE TENDENCIAS

MEDIDAS DE TENDENCIA
                                                             LA MEDIANA PARA DATOS  AGRUPADOS

La mediana se encuentra en el intervalo donde la frecuencia acumulada llega hasta la mitad de la suma de las frecuencias absolutas.
Es decir tenemos que buscar el intervalo en el que se encuentre cociente.
mediana
Li es el límite inferior de la clase donde se encuentra la mediana.
cociente es la semisuma de las frecuencias absolutas.
Fi-1 es la frecuencia acumulada anterior a la clase mediana.
ai es la amplitud de la clase.
La mediana es independiente de las amplitudes de los intervalos.

Ejemplo

Calcular la mediana de una distribución estadística que viene dada por la siguiente tabla:
 fiFi
[60, 63)55
[63, 66)1823
[66, 69)4265
[69, 72)2792
[72, 75)8100
 100 
100 / 2 = 50
Clase modal: [66, 69)
mediana

LA MODA PARA DATOS AGRUPADOS

 Todos los intervalos tienen la misma amplitud.

fórmula de la moda
Li es el límite inferior de la clase modal.
fi es la frecuencia absoluta de la clase modal.
fi--1 es la frecuencia absoluta inmediatamente inferior a la en clase modal.
fi-+1 es la frecuencia absoluta inmediatamente posterior a la clase modal.
ai es la amplitud de la clase.
También se utiliza otra fórmula de la moda que da un valor aproximado de ésta:
moda

Ejemplo

Calcular la moda de una distribución estadística que viene dada por la siguiente tabla:
 fi
[60, 63)5
[63, 66)18
[66, 69)42
[69, 72)27
[72, 75)8
 100
moda
moda

No hay comentarios.:

Publicar un comentario